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Abstract

In this paper the dynamic anti-plane problem for a functionally graded magneto-electro-elastic strip containing an
internal crack perpendicular to the boundary is investigated. The crack is assumed to be either magneto-electrically
impermeable or permeable. Integral transforms and dislocation density functions are employed to reduce the problem
to Cauchy singular integral equations. Numerical results show the effects of loading combination parameter, material
gradient parameter and crack configuration on the dynamic response. With the magneto-electrically permeable assump-
tion, both the magnetical and electrical impacts have no contribution to the crack tip field singularity. However, with
the impermeable assumption, both the applied magnetical loads and electrical loads play a dominant role in the
dynamic fracture behavior of crack tips. And for the two kinds of crack surface conditions, increasing the graded index
can all retard the crack extension.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Composite material consisting of a piezoelectric phase and a piezomagnetic phase has drawn signifi-
cant interest in recent years, due to the rapid development and application of this material in adaptive
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control systems. It shows a remarkably large magnetoelectric coefficient, the coupling coefficient between
static electric and magnetic fields, which does not exist in either component. The magnetoelectric cou-
pling is a new product property of the composite, since it is absent in each component. In some cases,
the coupling effect of piezoelectric/piezomagnetic composites can be even a hundred times larger than
that in a single-phase magnetoelectric material. Consequently, they are extensively used as magnetic field
probes, electric packaging, acoustic, hydrophones, medical ultrasonic imaging, sensors, and actuators
with the functionality of magneto-electro-mechanical energy conversion (Wu and Huang, 2000). When
subjected to mechanical, magnetical and electrical loads in service, these magneto-electro-elastic compos-
ites can fail prematurely due to some defects, such as cracks, holes and inclusions arising during their
manufacturing process. Therefore, it is of great importance to study the fracture behaviors of piezo-
electric/piezomagnetic composites under magneto-electro-elastic interactions (Song and Sih, 2003; Sih
and Song, 2003).

The development of piezoelectric-piezomagnetic composites has its root from the early work of Van
Suchtelen (1972) who proposed that the combination of piezoelectric-piezomagnetic phases might exhibit
a new material property—the magnetoelectric coupling effect. Since then, the magnetoelectric coupling ef-
fect of BaTiO3-CoFe,0O,4 composites has been measured by many researchers. Much of the theoretical work
for the investigation of magneto-electro-elastic coupling effect has only recently been studied (Wu and
Huang, 2000; Song and Sih, 2003; Sih and Song, 2003; Harshe et al., 1993; Avellaneda and Harshe,
1994; Nan, 1994; Benveniste, 1995; Wang and Shen, 1996; Huang and Kuo, 1997; Li and Dunn, 1998;
Li, 2000; Pan, 2001; Zhou et al., 2004; Lage et al., 2004).

To date, analysis of dynamic fracture problems of magneto-electro-elastic material is very limited. Du
et al. (2004) obtained the scattered fields of SH waves by a partially debonded magneto-electro-elastic cylin-
drical inhomogeneity, and determined the numerical results of crack opening displacement. Hou and Leung
(2004) analyzed the plane strain dynamic problem of a magneto-electro-elastic hollow cylinder by virtue of
the separation of variables, orthogonal expansion technique and the interpolation method. Buchanan
(2003) considered the free vibration problem of an infinite magneto-electro-elastic cylinder. To the best
of our knowledge, in all of these studies, the magneto-electro-elastic media are either homogeneous or
multi-layered.

On the other hand, although the transient response of piezoelectric material with cracks are widely inves-
tigated (Shindo et al., 1996; Chen and Yu, 1997; Wang and Yu, 2000; Kwon and Lee, 2000; Li, 2001; Gu
et al., 2002; Chen et al., 2003), to our knowledge, the transient response of cracks in magneto-electro-elastic
media has not been studied.

In this paper, the dynamic anti-plane problem of a functionally graded magneto-electro-elastic strip con-
taining an internal crack perpendicular to the boundary is studied. The material properties are assumed to
vary exponentially along the x-direction. Two kinds of crack surface conditions, i.e. magneto-electrically
impermeable and magneto-electrically permeable, are adopted. Integral transform technique is used to re-
duce the problem to the solution of singular integral equations. Numerical results are shown graphically to
illustrate the effects of loading combination parameter, material gradient parameter and crack configura-
tion on the dynamic responses.

2. Statement of problem

Consider an infinite magneto-electro-elastic strip that contains a Griffith crack with reference to the rect-
angular coordinate system Xx, y, z, as shown in Fig. 1. The strip exhibits transversely isotropic behavior and
is poled in z-direction. The anti-plane shear impacts and in-plane electric displacement and magnetic induc-
tion impacts are suddenly applied on the crack surfaces at = 0, and then maintain constants as imposed
loads. In Fig. 1, H(¢) denotes the Heaviside unit step function.
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Fig. 1. Crack problem for a functionally graded magneto-electro-elastic strip.

The constitutive equations for anti-plane magneto-electro-elastic media can be written as:

ow 0 0 ow 0 0
O —044—+€15—¢+f15 lﬁ Oz C44—+€15—¢+f15 l// (1)
Ox ox oy oy’
ow 0¢ aw ow aqﬁ oy
Di=esgr g "8 Dr=esg ming mgug, @
B w 0¢ oy . Ow ¢ oy
B, = fis ax_g“ ax—,“n o B, = fis 6y_g“ ay_:ull 3y’ (3)

where o, Dy, B (k= Xx, y) are the anti-plane shear stress, in-plane electric displacement and magnetic
induction, respectively; c44, €11, €15, f15, €11, 1411 are the material constants; w, ¢ and  are the mechanical
displacement, electric potential and magnetic potential, respectively.

The material properties are assumed to be one-dimensionally dependent as:

3 3 B X B
ca = cane”™, en =enee™, eis =esoe™,  f15=fisoe™, g =gnoe™, i =me™,  p=pee,

(4)

where p is the mass density.
Substituting Eqgs. (1)—(3) into the basic equations of magneto-electro-elastic boundary value problem,
ie.,

oo, Qda,  Ow
0x + dy P (5)
oD, D,

=0 6
xto 0 (6)
OB, 0B, o

o oy
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and applying Eq. (4), we can obtain the governing equation as follows:
ow ) d ow
Ca40 (VZW + ﬁ§> + eiso (V2¢ + ﬁa—f) + fis0 (Vzlﬁ + ﬁa—f) =Pogp
ow 0 0
eiso| V2w + B==) — &uo V2¢+ﬂ£ —&io VQ‘//'Fﬂfw =0,
Ox Ox Ox
ow o oy
Jis0 <v2W + ﬁa) — 8o (Vz(f’ + ﬁa) — Mo <Vzlp + ﬁa) =0,

where V2 = 0°/0x* + 9%/0y? is the two-dimensional Laplace operator.
Assume

¢p=dwrey+fil, ¥y =dw+ey+ frl

where dy, ey, f1, db, > and f5 (referring to Appendix A) are the known constants. The governing Egs.

(10) can be expressed as:

ow w
2 -7 72_
Vwt b=

0
Vit pt =0,
Ox
0
V4=,
ox
where ¢, = +/1y/p, is the shear wave speed and

5 2
ersothio — 2e150/1508110 + Sis0€110
] )
Hi10€110 — 8150

Ho = Caq0 +

The constitutive relations (1)—(3) can be rewritten as:

0o = e (migwx + maoy + myl,), 0z = (migw, +may, +ml,),
Dx = e/;xxi)m D_V = e/;xxi}”
Bx = eﬁxC,x By = eﬁxC,yv

where mjo, myy and ms, refer to Appendix A as well.

For the magneto-electrically impermeable crack, the boundary conditions are
0.(0,y,1) = D:(0,1,¢) = B(0,,/) =0, —o00 <y < 00,
sz(h7y’t):DX(h7y7l):Bx(h7y7t):()’ _oo<y<oo?

Gzy(xvovt) = _‘COH(t)7 Dy(xaoat) = _DOH(I)v By(xa Oa t) = _BOH(I)7 X € (aab)v
w(x,0,7) = ¢(x,0,7) = (x,0,¢) =0, x¢& (a,b).

For the magneto-electrically permeable case, the boundary conditions are

0,(0,y,6) = D:(0,y,¢) = B(0,,6) =0, —o00 <y < o0,
o(h,y,t) = D.(h,y,t) = B.(h,y,t) =0, —o0 <y < o0,
0.(x,0,1) = —10H(t), x € (a,b),

w(x,0,6) =0, x¢ (a,b),

d(x,0,1) = Y(x,0,£) =0, x€(0,h).
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And the electric displacement D,(x, 0, #) and magnetic induction B,(x, 0, f) on the crack surfaces consist of
two components. The first is the imposed electric displacement —DyH(¢) and magnetic induction— By H(¢)
for D)(x,0, ) and B(x, 0, ¢), respectively. The second is the unknown caused by —7¢H(¢) for both of
D,(x, 0, 1) and B,(x, 0, ?).

3. Derivation and solution of singular integral equations

We proceed with the magneto-electrically impermeable case. Define a Laplace transform pair as:

ro = [ e =5z [ e, (28)

in which Br stands for the Bromwich path of integration. The time-dependence in Eqgs. (12)—(14) are elim-
inated by the application of Eq. (28). Employing the Fourier transform on the variable x and the Fourier
sine transform on the variable y and noting at infinity the quantities in the left side of Eqgs. (12)—(14) must be
limited, we obtain

1 +00 ) 2 oo 3
wi(x,y,p) =5 / Ai(o,p)e e da+ — / > 4;(a, p)e™ sin(ay) da, (29)
- 0 =2
1 +00 ) ) oo 3
rrn) = [ Bpeedan s [T B e sint) dn (30)
—00 0 j=2
1 [t : 2 [ C
Cyp) =5 / Ci(onp)e e do+ = / > Cilo, p)e*sin(ay) do, (31)
0 j=2

where 4;, B;, C; (j =1, 2, 3) are the unknowns to be solved and

mi (o, p) = \fo? +p?/c3 +ifo,  maz(op) = —B/2F \/ﬁ2/4 + o2 +p?/es, (32a)
m(o) = o2 +ifo,  ms(0) = —B/2F \/ B[4+ 2. (32b)

Defining dislocation density functions g{x, p), i =1, 2, 3, as follows

i) = 0D g gy = SO oy SROD) ) (33)
g1(x,p) = & (x,p) = g3(x,p) =0, x ¢ (a,b), (33b)
and applying Egs. (29)-(31) and Eq. (11), we obtain
: b
A, :i / g (u, p)e™ du, (34)
i b
b= [ gifwpean, (35)

/ ¢l p)e™ du, (36)
where

giezg.z = 15081 (4, p) — €11082 (4, P) — €11083 (1, p), (37a)
gg’; = f15081 (t, p) — £110&2 (1, p) — 111083 (1, p). (37b)



W.J. Feng, R K L. Su/ International Journal of Solids and Structures 43 (2006) 5196-5216

5201

Similarly, using Egs. (16)—(18), (29)—(31), (34)—(36), together with the boundary conditions (19) and (20), it

follows that

b
Aymy + Azsmy = / g1 (u, p)F (2, u, p) du,

b
Byny + B3ny = / gT;%(”,P)FZ(“v u) du,

b
Cony + Csny = / g{gg(%P)Fz(%u) du,

b
AZmZeMZh +A3m3em}h = / gl(u,p)F4(oc,u,p) du7
b

Bonye™ + Bynse™ = / g5 (u, p)Fs (o, u) du,

b
C2n2€n2h + C3n3en3h = / g{gl;(uap)FS(aa u) du7
a

where

1 *© — . 1 *© —u -
Fi=o | ——a—edp, Fa=o- [ ———cdp,
' 2 /_OC mi(p,p) + o2 P " /_OC n(p) + o? p

1 0 —0o . 1 o0 — .
Fy=— —————e " dp  F :—/ — e P dp,
YT o [w mi(p,p) + o2 P s =0 o M(p) + o p

By using the theory of residues, the integrals in Eq. (44) may be evaluated as follows:

(xe—umg(tx,p) ae*“",@(“)
F, = ) F, = N
mz(ot,p) - m3(0(ap) I’lz((x) - 7’13(0()
Oce(hfu)mz(oc‘p) Cxe(h*“)”z(“)

Fa= my (o, p) — ms (o, p)’ Fs= ny(0) — m3(0)

Noting Eq. (45), 4>, A3, B>, Bz, C,, C3 can be expressed from (38)—(43) as

1 b

A2 = (e —emiym, / [Faler,p) — ™"y (o, u, p))g, (1 p)
1 ’ mah

A3 - m [e ’ Fl (OC, u,p) - F4(OC7 uvp)]gl (u7p) duv
1 ’ nih ecg

5= m [Fs (00, u) — &' F (e, u)| €155 (u, p) du,
! ’ nah ecg

By = (g |, 72 ) = Fi(n )l (o) du
: ' n3h feu

C2 = T gy, J, [Fat) = < Fala gl (u,p) du
1 ' nah fan

Cy = (@ — e [€""Fy (o, u) — Fs(o,u)]glSh (u, p) du.

(38)
(39)
(40)
(41)
(42)

(43)

(44a)

(44b)

(45a)

(45b)
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Substituting Eqgs. (29)—(31) into Egs. (16)—(18) in Laplace transform domain, we obtain

1 o0 .
O':y(x, 0,p) = eﬁx |: / *(mlomlAl + myom By + I’)’l30ll]C1)e_looc do

2n J_o
2 o 3
+E / Z (mloA‘,-em’x + mzoB_/‘enjx + m3oC_,-e"f'x)otdot s (52)
0 j=2
D’ (x,0,p) = e¥ 1 /OC —mBre ™ do —|—g /OO i(B e")oda (53)
y\ P) = o . 101 T Jo < i )
B'(x,0,p) = e L /oo o Cre i dy 4 /OC i:(c e")orda (54)
A\ P) = o . 1%-1 7 J j:2 j .

By means of Eqgs. (34)—(37), (46)—(54) and boundary conditions (21) in Laplace transform domain, we can
obtain the following integral equations:

1/ - -
- / {{mio (A1 + A1) + (2110/ 750 — 2e150/150&110 T M110€150) /(€110 — E110k10) (h12 + hi)]

g1(u,p) + erso(hin + illz)gz(uap) + fiso(h2 + ilu)&(”»l’)} du = —Toefﬂx/]?y x € (a,b), (55)

1 /° - - 5
- / le1so (h12 + hi2) gy (u, p) — enio (hi2 + h12) &5 (u, p) — g110 (h12 + hi2) g3 (u, p)] du

= —Doe ™ /p, x € (a,b), (56)

1 [/ - - N
= / fiso(hiz + h12)gy (u, p) — grio(h1z + hi2) gy (u, p) — pyo(hiz + hi2)gs(u, p)| du

Q

= —Boe_ﬁx/Pa X € (avb)7 (57)

where hy1(u, x, p), hio(u, x), fz”(mx,p) and 7112(u,x) (given in Appendix B) are the known functions.
Following the method developed by Erdogan and Gupta (1972), Egs. (55)—(57) can be modified as
follows:

l/b{{m (hii+ ki — Q) +c < : +Q>] (u,p)+e < : +Q) (u,p)
z )/ 10711 11 wo\ silthp)reso\ &\, p

+ <uix+ Q)fl50g'§(uap)} du = 7;?06_/})[7 X € (avb)7 (58)

1 /? 1 1
;/a |:el5o<u_x+Q>gl(u7p)_8110<u_X+Q>g2(uap)

1
—&110 <u —x + Q)gS(uvp)] du = _&e—ﬂx, X € (d,b), (59)

p

1 1 1
E/a {fwo(u_x‘FQ)gl(”vp)_gno(u_x‘f'Q)gz(“ap)

1 ~ Bu_p
Hi10 <u _x+ Q>g3(u7p):| du = > e ™, x€(a,b), (60)
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where
Q(U,X) = hlZ(uvx) + 1212(“7-)()7

Izll(uvxap) = / [M((L u7x7p) + M(—O(, u,x,p) — sin CX(L! - )C)] dO(7
0

s (1, ) = /Om N (2, 4, %) + N(—a, 1, x) — sin a(u — x)] do,

M= _1€1a(u7x) N = ﬂeia(ufx).

i ’ 2o
Introducing the following normalized quantities:
u=nb—a)/24+(b+a)/2, x=¢b—a)/2+(b+a)/2, —-1<(nc) <],
Gi(n,p) = & (u,p), Ga(n,p) =g (u,p), Gs(n,p) = g(u,p),
t(c) = —e ™1, t(c)=—-e"Dy, t(c)=—e "B,

Egs. (58)-(60) can be further written as

1
2 [ (L 0019 ) csni 1) + Gt ) + sl b
TJa\nN—¢

1 /! . s ~ t(c
+—/ mlo(hu(n,;,p)+k11(n7;,p)—Q(n,g))Gl(n,p)dn= ! ),
T J P

1 [t -~ (¢

- /1 (11 —+ Q(ﬂ,€)> (e10G1(n,p) — €110G2(n, p) — £110G3(n, p)) dnp = 21(;) ;

1 ! 1 ~ l3(§)

p P 0(n,¢) | (f150G1(n,p) — &110G2(1, p) — 110G (n, p)) dny = 0
-1 -5

where

—~ b —
Q(rla Q) = TaQ(uax)a

b—a-

N b—a S
hn(n,c,p)zThn(u,x,p), ki (n,¢,p) = 5 ——kn(u,x, p)

and the single-valued conditions (22) may be expressed as

1 1 1
/ Gi(n,p)dn =0, / Gy(n,p)dn =0, / Gi(n,p)dn = 0.

1 1 1

5203

(71a)

(71b)

(72)

Based on the numerical method of Erdogan and Gupta (1972), a system of linear algebraic equations can be

obtained as

(e

K

o )> caaoRi(n;,p) + e1soRa(n;, p) + fis0R3(n;, p)
jo S

Ri(n;,p) _ t(c)
K p

+ Zmlo (illl(’?jy Sihp) + 1}11(’7,-,%,}7) - @(77/, Gi))

j=1

£ 1
Z(”jgz+

J=1

~ . elsoRl(”Ij’P) - SIIORZ(ﬂjaP) - g110R3(”IjaP) ()
7’]/-7 Sl') K = p )
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k(1 Ri(n;,p) — g110R2(n;,p) — y10R3(n;, t:(c
< — +0(n,2) JisoR1(1;:p) — &10 2]51/ P) — toRs(n;,p) _ 3( ,)’ (75)
j=1 ’7/ Si p
K
S " Ri(n,p) /K =0, (76)
=1
K
J=1
K
> Ri(n;,p)/K =0, (78)
J=1
where
R1 =V I- UZGI(’?;P); R2 =V 1 - ’72G2(’7ap)7 R3 =V 1 - 772G3(7I>P)7 (79)
n; =cos[(2j — m/2K], j=1,2,...,K, (80)
¢, =cos(in/K), i=12,....K—1. (81)

K is the number of the discrete points of 7.

4. Definition and analysis of field intensity factors and energy release rates

The dynamic stress intensity factors (DSIFs), dynamic electric displacement intensity factors (DEDIFs)
and dynamic magnetic induction intensity factors (DMIIFs) in Laplace domain are defined as

K, = lim v/27(a = x)0).(x,0,p),  Kiy, = lim /27(x — b)ay (x, 0, p), (82)
K}, =1lim\/2n(a — x)D}(x,0,p), K, = ling V2n(x — b)D;(x,0,p), (83)
Ky, =lim+/2n(a — x)B}(x,0,p), Kp, = lirr}} v 2n(x — b)B;(x,0,p). (84)

Expanding R;(#, p), Rx(n, p) and Rs(#, p) in forms of Chebyshev polynomials 7(#) and applying the follow-
ing property of T{(1)

{(;2 — 1)1/2 — c]j

Lt A=) T ;

_/ %d - J+1 172 |C|>1, (85)

T Jo n—g (=" (¢2-1)

we obtain

b—a

Kl = eﬂg\/ 3 T[caoR1 (=1, p) + e1soR2(—1,p) + fisoR3(—1,p)], (86a)

b—a

Ky = —€” > [caaoR (1, p) + e1soR2(1,p) + fisoR3(1,p)], (86b)
b—a

Kpy = eﬁa\/ 3 nleisoRi (—1,p) — enoRa(—1,p) — g11oR3(=1,p)], (87a)

b—a
Ky, = *eﬁb\/ 3 nleisoRi(1,p) — e110Ra(1, p) — g110R3(1, p)], (87b)
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—a
nfis0R1 (=1, p) — g110R2(=1,p) — p11oR3(—1,p)], (88a)

. /b
Ky, = —e” [flSOR (1,p) — gioR2(1,p) — w110R3(1, p)]- (88b)
Note Egs. (76)—(78) can be written as

*  __ fa
K, =¢

K
Z [caoR1 (1}, ) + e1soRa (1, p) + fis0R3(n;, p)] = 0, (89)

J=1

M)~

le1soR1 (1, p) — e110R2 (0}, p) — gnioR3(n;,p)] = 0, (90)

~.
||

Ngle

[fisoR1(n;,0) — &1oRa(n;,p) — py10Ra(n;, p)] = 0. (91)

J

It is easy to know that eysoRi(1;, p) — e110Ra(1), ) — g110R3(nj, p) and  fisoRi(17 p) — grioRa(1), p) —
Ui10R3(n;, p) are independent and that they respectively can be obtained by solving Egs. (74) and (90),
and Eqgs. (75) and (91). By expressing the solution of Egs. (74) and (90) for unit electrical loads as following

e]SORl(njvp) - 3110R2(’7‘f7}7) - g110R3(’7,-7P) = @(’7;)/17» (92)
the DEDIFs and DMIIFs in time domain can be obtained from Egs. (87)—(88) as

b —

Kp, = €MD, 2“7145(_1)}1(;), Kpy = _ef”’D./ L a1 (93)
b —

Ko = "B, 2“n<1>(—1)H(z), Ky = —e“’BM/ a1 (94)

It can be seen that both the DEDIFs and DMIIFs are the Heaviside unit step function of time, and only
related to the corresponding electrical or magnetical impact loads. They are both independent of the
mechanical loads as well as the relevant material constants. This coincides with the results for the static
problem.

With the solutions of e1s5oRi(17 p) — €110Ra2(1j ) — g110R3(1;, p) and  fisoRi(n;, p) — gri0Ra(ny, p) —
/1110R3(I’]j, p), C440R1(—1,p) + 8150R2(—1,p) +f150R3(—1,p) can be obtained from EqS (73) and (89) The
DSIFs in time domain can be written as

Ib—a /b—a
K, = e 3 P (-1,7), Kup= —€” 3 n?(1,1), (95)

where

1
Y(n,t) = %/3 [casoR1 (11, p) + ersoR2 (11, p) + fisoR3(n, p)le” dp. (96)

It is easy to know that the DSIFs are related to mechanical loads, electrical loads, magnetical lpads and the
relevant material constants. However, when the loads tend to be static ones, hn(nj, ¢,p)+ ku(ﬂ,—, Ci,D)—
Q(n;,¢;) in Eq. (73) vanishes, the resulting SIFs will become, from Egs. (73) and (89), as follows

K = eﬁaTO \/ b ; . n®(-1)H(t), Kup = —eﬁb‘fo \/ ’ ; a”‘p(l)H(t)- 97)

That is, for static problem, the SIFs are only related to mechanical loads as well.
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It should be noted that if all the magnetic quantities are made to vanish, the magneto-electro-elastic solu-
tion reduces to the dynamic anti-plane crack problem of piezoelectric material (Chen and Yu, 1997). This
means our results are universal and correct.

Further extending the traditional concept of dynamic stress intensity factor to the dynamic strain inten-
sity factor Kg, electric field intensity factor Kz and magnetic field intensity factor Ky, we have from Egs.
(95), (93), (94) and (1), (2), (3)

Ksq w,(x,0,1) ¥(—1,0)d

Ke | =lim/Znla =) | ~¢,(.0.0) | =25 | Do) |, (98)
Ko o ¥ (x,0,2) By®(—1)H(¢)

K w,(x,0,1) Y(l,1)

Ky | =limy/2n(c—b) [ —¢,(x,0,0) | =~ /% ; x| Ded(VH() |, (99)
K —,(x,0,7) Bo®(1)H (1)

where

cuo  —eiso  —f1s0
II=|es €m0 &g |- (100)

fis0 &0 K110

Obviously, K, Kz and Ky all depend on material constants and applied loads including mechanical loads,
electrical loads and magnetical loads.

For the magneto-electrically impermeable cracks, as the electrical and/or magnetical impacts are
loaded, the DSIFs cannot perfectly reflect the fracture characteristics as in the purely elastic case. There-
fore, the dynamic energy release rates (DERRs) G are introduced by calculating the work done in closing
the crack tip over an infinitesimal distance. In accordance with the definition of the energy release rate
proposed by Pak (1990), after a similar deriving process carried out by Wang and Yu (2000), we can finally
obtain

1

Gx(1) = 5 [Kuns(0)Koz(t) + Koz()K ga0) + Kz (0K y=(0)| . == a.b, (101)

where

~ & — g2 K =+ (e — K 5+ & — e Kpz
Kw_::(ﬂ“o 110 gno) mz + (ersoiti10 — f1508110)Kpz + (fis0&110 1508110) B~7 (102a)

(casotiiotino + €fsotiig + fispe110 = Caaghio — 2€r150f1508110) €=
oo (e1soit10 — f1508110) Kz — (c440#110 +f1250)KD5 + (cas0€110 + €150/150)K = (102b)
vz (casotyiogr10 + €fsottiio + fHs08110 — Caaogiio — 2€150/1508110)e"* ’

2
~  (fisoeno — e150€110) Kz + (Casngiio + €150/150)Kpz — (casotino + €i50) Kz
- 2 2 2 =z .
(casottiio€iio + efsohting + fiso€110 — Caa08T19 — 2€150/1508110)€”

(102c)

For magneto-electrically permeable case, the singular integral equation and the single-valued condition
can be derived by a similar method as

1 [t -
E/ |:m10(h11 + ki —Q)+C440(

/ g (u,p)du=0. (104)

u—x

+QH&Wmmu:—jf% x€ (a,b), (103)
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The electric displacement Dj(x, 0, p) and magnetic induction B;(x,0,p) on the crack surfaces can be ob-

tained as

I 1 D
Dy 0.p) =~ [ eva (L 0w Jewp)du =2, e (an),

1 [ 1
B0.) = [ fis <+ 0
n J, u—x

OMQ&wmwf,xewm

The field intensity factors and DERRs in time domain are respectively

b—a b—a
Kma:eﬁa\/ > TeasoR1 (—1, 1), Kmb:*eﬁb\/ > measoR: (1, 1),

1.8 q
1.6 —
1.4 —
1.2 —
1.0 —

0.8 +

Kyl To(Te (b-a)/2)*2

0.6
0.4 4 f
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1
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D
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4.5 q
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S
(92}
o
~
©
©
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-8 - Bh=1n(0.2)
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(105)
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Fig. 2. Comparison of normalized (a) DSIFs and (b) DERRs between electrically impermeable and permeable cracks under shear

impacts for functionally graded piezoelectric strip.
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Kpe = —Kuw(t), Kpy =——Kun(t), (108)
C440 440
Kp, = fﬂKﬂla([)a Kp = I—SOKmb(f), (109)
Ca40 0
1 1
Kg, = Ki(t), K= K (1), (110)
Ca40eha Ca40eht
KEa *KEIJ *07 111
Ko = K = 0, (112)
Kiia (1) Kii (1)
Ga — e e—/ia7 G 1116 e—/fb7 113
2c440 2c440 ( )
where
1
R t)=— R e”d 114
(0.0 =5 [ Rin.p)edp (114)

and R(#, p) can be obtained by solving Egs. (103) and (104).

As shown in Egs. (107)—(113), for magneto-electrically permeable cracks, both the electric field intensity
factors and magnetic field intensity factors vanish. Electrical loads and magnetical loads reduce the concen-
tration of DEDIFs and DMIIFs, respectively. Material graded index has the same influences on the DSIFs,
DEDIFs, DMIIFs and dynamic strain intensity factors. The DERRs, DEDIFs, DMIIFs and dynamic
strain intensity factors are the functions of the DSIFs, and all of them including the DSIFs depend on
not only shear loads but also material parameters. Both imposed magnetical loads and electrical loads
do not contribute to the DSIFs and/or DERRs, thus, the DERRs and DSIFs are quite equivalent to be
a fracture parameter. This is similar to the electrically permeable crack problem of piezoelectric materials
(Wang and Yu, 2000). In the absence of the mechanical impact loads, in other words, the material is in
effect seamless as far as both the electric field and the magnetic field are concerned, and the fields will
not be perturbed by the presence of the cracks (McMeeking, 1989). It should also be noted that when
the loads tend to static ones, mjo(/y + ki — Q) in Eq. (103) vanishes, the SIFs will be quite in agreement

4.0 - )
] impermeable
3.5 4 —&—Bh=1In(0.2)
| /\__Q_,/’@ —e— Bh=1In(1.0)
3.0 —&— Bh=1In(5.0)
1 permeable
2.5+ f -+ - Bh=1n(0.2)
. T -0 - Bh=1In (1.0)
Q, 201 <-4+ Bh=In (5.0)
o 4 //\6\——6—’_’__6
1.5
1.0+
4 — A
0.5 1
A;=A,=0.0, (b-a)/h=1/1.5
0.0 —t - r - 1T 1111111
0 1 2 3 4 5 6 7 8 9 10
2¢,t/(b-a)

Fig. 3. Comparison of normalized DERRs between magneto-electrically impermeable and permeable cracks under shear impacts for
functionally graded magneto-electro-elastic strip.
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with the magneto-electrically impermeable case, i.e., Eq. (97). This means for static problem, the SIFs are
related to the shear loads only.

5. Numerical results and discussion

In this section, we investigate the responses of functionally graded magneto-electro-elastic strip with a
central crack (b + a = h). Since the DERRSs and field intensity factors at the left crack tip for a certain mate-
rial gradient parameter i have definite relations to those at the right crack tip for the corresponding neg-
ative value —fh, only the numerical results at the left crack tip will be presented. Without any loss in
generality, in all our numerical procedure, 7, is taken as 4.2 x 10° N/m?>.

For comparison with the known results, as a special example, the DSIFs and DERRs for the crack prob-
lem of functionally graded piezoelectric material under both electrically impermeable and electrically
permeable crack surface conditions are first calculated. The material constants at x = 0 plane are assumed

2.5 1 —&— (b-a)/h=1/1.25
—o— (b-a)/h=1/1.50
—a— (b-a)/h=1/2.50
2.0+
o 154
0)
y
1.0
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0.5 A=2,=0.0
Bh=In(1.0)
0O T T T T T T 1
0 1 2 3 4 5 6 7 8 9 10
(a) 2c,t/(b-a)
1.6 4 ___—s—(b-a)h=1/1.25
] —o— (b-a)/h=1/1.50
141 —a— (b-a)/h=1/2.50
. L2-
ER ]
o
= 1.0 4
é ]
E 081
£
F 06
x | impermeable
0.4 A'5:7"0:0'0
1 Bh=In(1.0)
0.2
0.0 T T T T T T T T T 1
0 1 2 3 4 5 6 7 8 9 10
(b) 2c,t/(b-a)

Fig. 4. Normalized (a) DERRs and (b) DSIFs for homogeneous magneto-electro-elastic strip under shear impacts.
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to be those of BaTiO3; (Wang and Yu, 2000; Chen et al., 2003). From the numerical results plotted in
Fig. 2a, it is obvious that the present results are in good agreement with those given by Chen et al.
(2003). From Fig. 2b, where Gy = n(b — a)t3/[4(caa0 + €l5y/€110)], it is found that for homogeneous piezo-
electric strip, i.e., i = In(1.0), our results are also in agreement with those given by Wang and Yu (2000).

For functionally graded magneto-electro-elastic material, for the sake of generality, the material con-
stants at x = 0 plane are taken as (Song and Sih, 2003)

Caso = 44.65 x 10° N/m?,  e;50 = 5.7C/m?, &0 = 6.46 x 107° C/V m,
fiso =275.0N/Am, g0 =—-2925x10°Ns?/C*, p, =649 x 10’ kg/m’,

i.e., in Eq. (A.1) in Song and Sih (2003), the composite is assumed to be made of BaTiO; as the inclusions
and CoFe,0O4 as the matrix, and the volume fraction of the inclusions is taken as V= 0.5. Numerical

320.0 4
317.5 + 1.0
] impermeable crack
315.0 (b-a)/h=1/1.5
A A,=0.0
312.5 +
-1.0
¢ 3100 =
Bm J 0.5
75 -0.5
50 - -
25
] A =0.0
o -
T T T T | T T L
0 1 2 3 4 5 6 7 8 9 10
(a) 2c,t/(b-a)
S
?
Q .
= impermeable crack
g (b-a)/h=1/1.5
< A,=0.0
| A A A A A e |
4 5 6 7 8 9 10
(b) Zczt/(b-a)

Fig. 5. Normalized (a) DERRs and (b) DSIFs for functionally graded magneto-electro-elastic strip under various magnetical loads as
Ap=0.0.
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results are presented in Figs. 3-8, where the DERRs are normalized by G, which is determined as
Go = n(b — a)7)/(41,). The loading combination parameter /g is determined as Az = Bof}so/(Toft110) which
is used to reflect the combination between the mechanical impact —toH(f) and the magnetical impact
—ByH(1). Ap is determined as Ap = Dyeyso/(toe110) Which is used to reflect the combination between the
mechanical impact —toH(7) and the electrical impact —DyH(?).

Fig. 3 compares the normalized DERRs between the magneto-electrically impermeable and permeable
cases for (b — a)/h = 1/1.5 in the absence of magneto-electrical impacts (13 = Ap = 0). The peak value cor-
responding to magneto-electrically impermeable cracks are smaller than that corresponding to permeable
cracks. There are no other distinct differences. Since both magnetical and electrical impacts have no con-
tribution to the DERRs and/or DSIFs for the magneto-electrically permeable cracks, the following part
of this section will mainly concentrate on the impermeable case.
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Fig. 6. Normalized DERRs for functionally graded magneto-electro-elastic strip under various magnetical loads as (a) Ap =0.5,
(b) ip=—0.5.
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Fig. 7. Normalized (a) DERRs and (b) DSIFs for functionally graded magneto-electro-elastic strip under various electrical loads as
)vB = 05

For the homogeneous magneto-electro-elastic strip, the DERRs and DSIFs under the shear impacts are
plotted in Fig. 4. As shown in Fig. 4, the peak values of DERRs or DSIFs will increase with the increasing
of (b — a)/h, and the DERRs and DSIFs are also equivalent to be a fracture parameter under only mechan-
ical impacts, which is similar to electrically impermeable crack problem of piezoelectric materials (Wang
and Yu, 2000).

Figs. 5 and 6 show that for definite electrical loads, in general, magnetical loads enhance crack propa-
gation and growth, and that positive magnetical loads effectively enhance crack propagation compared with
negative magnetical loads. Figs. 5 and 6 also indicate that for definite electrical impact loads, at 1 = 0, the
DERRS for a fixed /z equal to that for corresponding —Ap.

Fig. 7 shows that for definite magnetical loads, electrical loads always decrease the DERRs, and that
negative electrical loads are easier to inhibit crack growth than positive electrical loads. In addition, for
definite magnetical loads, at t = 0, the DERRSs for a fixed Ap equal to that for —1, as well. This coincides
with electrically impermeable crack problem for homogeneous piezoelectric strip (Wang and Yu, 2000).
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Fig. 8. Effects of (b — a)/h and Bh on normalized (a) DERRs and (b) DSIFs for functionally graded magneto-electro-elastic strip.

Fig. 8 shows the effects of crack size (b — a)/h and material gradient parameter fh on the normalized
DERRSs and DSIFs. It is found that the maximum of DERRs and/or DSIFs at the left crack tip will in-
crease as (b — a)/h increases or Bh decreases. And with the increase of ph, the effect of (b — a)/h on the
normalized DERR and/or DSIF will decrease.

6. Conclusions

(1) Integral transform and singular integral equation method can be used effectively to solve the dynamic
response of a functionally graded magneto-electro-elastic strip containing a finite crack subjected to
magneto-electro-mechanical impacts.

(2) For the magneto-electrically impermeable cracks, the DEDIFs and DMIFs are, respectively, related
to applied electrical loads and magnetical loads only. All the other field intensity factors and DERRs
depend on both applied loads including mechanical, electrical and magnetical loads and material
parameters. In addition, both DEDIFs and DMIFs are the Heaviside step function of time.
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(3) For the magneto-electrically permeable cracks, both magnetical and electrical impacts have no
contribution to the DERR and field intensity factors. Both magnetic field and electric field intensity
factors vanish. All other field intensity factors and DERRs are related to mechanical loads
and material parameters. Among others, only one of them, such as stress intensity factor, is
independent.

(4) In general, the maximum of normalized DERRs for magneto-electrically permeable cracks are
generally higher than that for impermeable case under only mechanical impacts.

(5) For the magneto-electrically impermeable cracks, the loading combination parameters have signifi-
cant and different influences on the normalized DERRs and DSIFs. According to maximum energy
release rate criterion, magnetical loads always enhance the crack propagation, and the cracks are eas-
ier to propagate under positive magnetical loads than under negative magnetical loads. However,
electric displacement loads always impede the crack propagation, and the negative electrical loads
effectively inhibit crack propagation compared with positive electrical loads.

(6) For both magneto-electrically impermeable and permeable cracks, the increasing of material gradient
parameter fh, in general, retards the crack extension.
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Appendix A

dy, ey, f1, d», e; and f> in Eq. (11) are as follows:

ersoftiio — J1508110 —Hi1o 8110
dl: . 2 ’ €y = . 2 flz N 2 (Al)
Hir0€110 — &110 Hi10€110 — &110 Hito€110 — &110
€110/150 — €1508110 8110 ~ —&110
d2:4 B 3 € = 2 f2: 2 (AZ)
Hi10€110 — 8110 Hi10€110 — 8110 Hi10€110 — 8110
myg, My, M3p in Eq. (16) are as follows:
2 2
&n0fiso — 2e1s0/1508110 + Hi10€750 J1508110 — €150f110
mig = Caqa0 + 5 , My = > ) (A3)
Hit0€110 — 8110 Hi10€110 — &110
e1508110 — S1s0€110
my)y =————""—>5—. (A.4)

2
Hi10€110 — 8110

Appendix B

hyi by (i =1, 2) in Egs. (55)—(57) are as follows:

[ DeMsx
h = S —e™mhE d
11(u,x, p) /0 (e —emzh)[ 4(ot,u, p) — " Fy (o, u, p)] ader

&) 2em2x
+ /(; W [F4(OC,M,p) — e"”hFl (ot,u,p)]ocdac (Bl)
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hip(u,x) = / 2e73[F5(oc,u) — e""Fy (o, u)]oudor
o nl

en3h _ e"zh)
o8] 2enzx ns
+ | W[FS(O(M) — "' Fy (o, u)|oda (B.2)
~ < m .
hll (u,x7p) = / T;Cw(uix) dOC, (B3)
T (u, x) = / %ei“(“"‘) dor. (B.4)
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