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Abstract

In this paper the dynamic anti-plane problem for a functionally graded magneto-electro-elastic strip containing an
internal crack perpendicular to the boundary is investigated. The crack is assumed to be either magneto-electrically
impermeable or permeable. Integral transforms and dislocation density functions are employed to reduce the problem
to Cauchy singular integral equations. Numerical results show the effects of loading combination parameter, material
gradient parameter and crack configuration on the dynamic response. With the magneto-electrically permeable assump-
tion, both the magnetical and electrical impacts have no contribution to the crack tip field singularity. However, with
the impermeable assumption, both the applied magnetical loads and electrical loads play a dominant role in the
dynamic fracture behavior of crack tips. And for the two kinds of crack surface conditions, increasing the graded index
can all retard the crack extension.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Composite material consisting of a piezoelectric phase and a piezomagnetic phase has drawn signifi-
cant interest in recent years, due to the rapid development and application of this material in adaptive
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control systems. It shows a remarkably large magnetoelectric coefficient, the coupling coefficient between
static electric and magnetic fields, which does not exist in either component. The magnetoelectric cou-
pling is a new product property of the composite, since it is absent in each component. In some cases,
the coupling effect of piezoelectric/piezomagnetic composites can be even a hundred times larger than
that in a single-phase magnetoelectric material. Consequently, they are extensively used as magnetic field
probes, electric packaging, acoustic, hydrophones, medical ultrasonic imaging, sensors, and actuators
with the functionality of magneto-electro-mechanical energy conversion (Wu and Huang, 2000). When
subjected to mechanical, magnetical and electrical loads in service, these magneto-electro-elastic compos-
ites can fail prematurely due to some defects, such as cracks, holes and inclusions arising during their
manufacturing process. Therefore, it is of great importance to study the fracture behaviors of piezo-
electric/piezomagnetic composites under magneto-electro-elastic interactions (Song and Sih, 2003; Sih
and Song, 2003).

The development of piezoelectric-piezomagnetic composites has its root from the early work of Van
Suchtelen (1972) who proposed that the combination of piezoelectric-piezomagnetic phases might exhibit
a new material property—the magnetoelectric coupling effect. Since then, the magnetoelectric coupling ef-
fect of BaTiO3-CoFe2O4 composites has been measured by many researchers. Much of the theoretical work
for the investigation of magneto-electro-elastic coupling effect has only recently been studied (Wu and
Huang, 2000; Song and Sih, 2003; Sih and Song, 2003; Harshe et al., 1993; Avellaneda and Harshe,
1994; Nan, 1994; Benveniste, 1995; Wang and Shen, 1996; Huang and Kuo, 1997; Li and Dunn, 1998;
Li, 2000; Pan, 2001; Zhou et al., 2004; Lage et al., 2004).

To date, analysis of dynamic fracture problems of magneto-electro-elastic material is very limited. Du
et al. (2004) obtained the scattered fields of SH waves by a partially debonded magneto-electro-elastic cylin-
drical inhomogeneity, and determined the numerical results of crack opening displacement. Hou and Leung
(2004) analyzed the plane strain dynamic problem of a magneto-electro-elastic hollow cylinder by virtue of
the separation of variables, orthogonal expansion technique and the interpolation method. Buchanan
(2003) considered the free vibration problem of an infinite magneto-electro-elastic cylinder. To the best
of our knowledge, in all of these studies, the magneto-electro-elastic media are either homogeneous or
multi-layered.

On the other hand, although the transient response of piezoelectric material with cracks are widely inves-
tigated (Shindo et al., 1996; Chen and Yu, 1997; Wang and Yu, 2000; Kwon and Lee, 2000; Li, 2001; Gu
et al., 2002; Chen et al., 2003), to our knowledge, the transient response of cracks in magneto-electro-elastic
media has not been studied.

In this paper, the dynamic anti-plane problem of a functionally graded magneto-electro-elastic strip con-
taining an internal crack perpendicular to the boundary is studied. The material properties are assumed to
vary exponentially along the x-direction. Two kinds of crack surface conditions, i.e. magneto-electrically
impermeable and magneto-electrically permeable, are adopted. Integral transform technique is used to re-
duce the problem to the solution of singular integral equations. Numerical results are shown graphically to
illustrate the effects of loading combination parameter, material gradient parameter and crack configura-
tion on the dynamic responses.
2. Statement of problem

Consider an infinite magneto-electro-elastic strip that contains a Griffith crack with reference to the rect-
angular coordinate system x, y, z, as shown in Fig. 1. The strip exhibits transversely isotropic behavior and
is poled in z-direction. The anti-plane shear impacts and in-plane electric displacement and magnetic induc-
tion impacts are suddenly applied on the crack surfaces at t = 0, and then maintain constants as imposed
loads. In Fig. 1, H(t) denotes the Heaviside unit step function.
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Fig. 1. Crack problem for a functionally graded magneto-electro-elastic strip.
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The constitutive equations for anti-plane magneto-electro-elastic media can be written as:
rzx ¼ c44

ow
ox
þ e15

o/
ox
þ f15

ow
ox
; rzy ¼ c44

ow
oy
þ e15

o/
oy
þ f15

ow
oy
; ð1Þ

Dx ¼ e15
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ox
� e11

o/
ox
� g11
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ox
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� g11

ow
oy
; ð2Þ
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� l11
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; ð3Þ
where rzk, Dk, Bk (k = x, y) are the anti-plane shear stress, in-plane electric displacement and magnetic
induction, respectively; c44, e11, e15, f15, g11, l11 are the material constants; w, / and w are the mechanical
displacement, electric potential and magnetic potential, respectively.

The material properties are assumed to be one-dimensionally dependent as:
c44 ¼ c440ebx; e11 ¼ e110ebx; e15 ¼ e150ebx; f 15 ¼ f150ebx; g11 ¼ g110ebx; l11 ¼ l110ebx; q ¼ q0ebx;

ð4Þ
where q is the mass density.
Substituting Eqs. (1)–(3) into the basic equations of magneto-electro-elastic boundary value problem,

i.e.,
orzx

ox
þ orzy

oy
¼ q

o2w
ot2

; ð5Þ

oDx

ox
þ oDy

oy
¼ 0; ð6Þ
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þ oBy
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¼ 0 ð7Þ
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and applying Eq. (4), we can obtain the governing equation as follows:
c440 r2wþ b
ow
ox

� �
þ e150 r2/þ b

o/
ox

� �
þ f150 r2wþ b

ow
ox

� �
¼ q0

o2w
ot2

; ð8Þ

e150 r2wþ b
ow
ox

� �
� e110 r2/þ b

o/
ox

� �
� g110 r2wþ b
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ox

� �
¼ 0; ð9Þ

f150 r2wþ b
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ox

� �
� g110 r2/þ b
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ox

� �
� l110 r2wþ b
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ox

� �
¼ 0; ð10Þ
where $2 = o2/ox2 + o2/oy2 is the two-dimensional Laplace operator.
Assume
/ ¼ d1wþ e1vþ f1f; w ¼ d2wþ e2vþ f2f; ð11Þ
where d1, e1, f1, d2, e2 and f2 (referring to Appendix A) are the known constants. The governing Eqs. (8)–
(10) can be expressed as:
r2wþ b
ow
ox
¼ c�2

2

o2w
ot2

; ð12Þ

r2vþ b
ov
ox
¼ 0; ð13Þ

r2fþ b
of
ox
¼ 0; ð14Þ
where c2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
l0=q0

p
is the shear wave speed and
l0 ¼ c440 þ
e2

150l110 � 2e150f150g110 þ f 2
150e110

l110e110 � g2
150

. ð15Þ
The constitutive relations (1)–(3) can be rewritten as:
rzx ¼ ebx m10w;x þ m20v;x þ m30f;x
� �

; rzy ¼ ebx m10w;y þ m20v;y þ m30f;y
� �

; ð16Þ
Dx ¼ ebxv;x; Dy ¼ ebxv;y ; ð17Þ
Bx ¼ ebxf;x By ¼ ebxf;y ; ð18Þ
where m10, m20 and m30 refer to Appendix A as well.
For the magneto-electrically impermeable crack, the boundary conditions are
rzxð0; y; tÞ ¼ Dxð0; y; tÞ ¼ Bxð0; y; tÞ ¼ 0; �1 < y <1; ð19Þ
rzxðh; y; tÞ ¼ Dxðh; y; tÞ ¼ Bxðh; y; tÞ ¼ 0; �1 < y <1; ð20Þ
rzyðx; 0; tÞ ¼ �s0HðtÞ; Dyðx; 0; tÞ ¼ �D0HðtÞ; Byðx; 0; tÞ ¼ �B0HðtÞ; x 2 ða; bÞ; ð21Þ
wðx; 0; tÞ ¼ /ðx; 0; tÞ ¼ wðx; 0; tÞ ¼ 0; x 62 ða; bÞ. ð22Þ
For the magneto-electrically permeable case, the boundary conditions are
rzxð0; y; tÞ ¼ Dxð0; y; tÞ ¼ Bxð0; y; tÞ ¼ 0; �1 < y <1; ð23Þ
rzxðh; y; tÞ ¼ Dxðh; y; tÞ ¼ Bxðh; y; tÞ ¼ 0; �1 < y <1; ð24Þ
rzyðx; 0; tÞ ¼ �s0HðtÞ; x 2 ða; bÞ; ð25Þ
wðx; 0; tÞ ¼ 0; x 62 ða; bÞ; ð26Þ
/ðx; 0; tÞ ¼ wðx; 0; tÞ ¼ 0; x 2 ð0; hÞ. ð27Þ
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And the electric displacement Dy(x, 0, t) and magnetic induction By(x, 0, t) on the crack surfaces consist of
two components. The first is the imposed electric displacement �D0H(t) and magnetic induction�B0H(t)
for Dy(x, 0, t) and By(x, 0, t), respectively. The second is the unknown caused by �s0H(t) for both of
Dy(x, 0, t) and By(x, 0, t).
3. Derivation and solution of singular integral equations

We proceed with the magneto-electrically impermeable case. Define a Laplace transform pair as:
f �ðpÞ ¼
Z 1

0

f ðtÞe�pt dt; f ðtÞ ¼ 1

2pi

Z
Br

f �ðpÞept dp; ð28Þ
in which Br stands for the Bromwich path of integration. The time-dependence in Eqs. (12)–(14) are elim-
inated by the application of Eq. (28). Employing the Fourier transform on the variable x and the Fourier
sine transform on the variable y and noting at infinity the quantities in the left side of Eqs. (12)–(14) must be
limited, we obtain
w�ðx; y; pÞ ¼ 1

2p

Z þ1

�1
A1ða; pÞe�m1ye�iax daþ 2

p

Z 1

0

X3

j¼2

Ajða; pÞemjx sinðayÞda; ð29Þ

v�ðx; y; pÞ ¼ 1

2p

Z þ1

�1
B1ða; pÞe�n1ye�iax daþ 2

p

Z 1

0

X3

j¼2

Bjða; pÞenjx sinðayÞda; ð30Þ

f�ðx; y; pÞ ¼ 1

2p

Z þ1

�1
C1ða; pÞe�n1ye�iax daþ 2

p

Z 1

0

X3

j¼2

Cjða; pÞenjx sinðayÞda; ð31Þ
where Aj, Bj, Cj (j = 1, 2, 3) are the unknowns to be solved and
m1ða; pÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ p2=c2

2 þ iba
q

; m2;3ða; pÞ ¼ �b=2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2=4þ a2 þ p2=c2

2

q
; ð32aÞ

n1ðaÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ iba

p
; n2;3ðaÞ ¼ �b=2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2=4þ a2

q
. ð32bÞ
Defining dislocation density functions gi(x, p), i = 1, 2, 3, as follows
g1ðx; pÞ ¼
ow�ðx; 0; pÞ

ox
; g2ðx; pÞ ¼

o/�ðx; 0; pÞ
ox

; g3ðx; pÞ ¼
ow�ðx; 0; pÞ

ox
; x 2 ða; bÞ; ð33aÞ

g1ðx; pÞ ¼ g2ðx; pÞ ¼ g3ðx; pÞ ¼ 0; x 62 ða; bÞ; ð33bÞ
and applying Eqs. (29)–(31) and Eq. (11), we obtain
A1 ¼
i

a

Z b

a
g1ðu; pÞeiau du; ð34Þ

B1 ¼
i

a

Z b

a
geeg

123ðu; pÞeiau du; ð35Þ

C1 ¼
i

a

Z b

a
gfgl

123ðu; pÞeiau du; ð36Þ
where
geeg
123 ¼ e150g1ðu; pÞ � e110g2ðu; pÞ � g110g3ðu; pÞ; ð37aÞ

gfgl
123 ¼ f150g1ðu; pÞ � g110g2ðu; pÞ � l110g3ðu; pÞ. ð37bÞ
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Similarly, using Eqs. (16)–(18), (29)–(31), (34)–(36), together with the boundary conditions (19) and (20), it
follows that
A2m2 þ A3m3 ¼
Z b

a
g1ðu; pÞF 1ða; u; pÞdu; ð38Þ

B2n2 þ B3n3 ¼
Z b

a
geeg

123ðu; pÞF 2ða; uÞdu; ð39Þ

C2n2 þ C3n3 ¼
Z b

a
gfgl

123ðu; pÞF 2ða; uÞdu; ð40Þ

A2m2em2h þ A3m3em3h ¼
Z b

a
g1ðu; pÞF 4ða; u; pÞdu; ð41Þ

B2n2en2h þ B3n3en3h ¼
Z b

a
geeg

123ðu; pÞF 5ða; uÞdu; ð42Þ

C2n2en2h þ C3n3en3h ¼
Z b

a
gfgl

123ðu; pÞF 5ða; uÞdu; ð43Þ
where
F 1 ¼
1

2p

Z 1

�1

�a
m2

1ðq; pÞ þ a2
eiqu dq; F 2 ¼

1

2p

Z 1

�1

�a
n2

1ðqÞ þ a2
eiqu dq; ð44aÞ

F 4 ¼
1

2p

Z 1

�1

�a
m2

1ðq; pÞ þ a2
e�iqðh�uÞ dq; F 5 ¼

1

2p

Z 1

�1

�a
n2

1ðqÞ þ a2
e�iqðh�uÞ dq. ð44bÞ
By using the theory of residues, the integrals in Eq. (44) may be evaluated as follows:
F 1 ¼
ae�um3ða;pÞ

m2ða; pÞ � m3ða; pÞ
; F 2 ¼

ae�un3ðaÞ

n2ðaÞ � n3ðaÞ
; ð45aÞ

F 4 ¼
aeðh�uÞm2ða;pÞ

m2ða; pÞ � m3ða; pÞ
; F 5 ¼

aeðh�uÞn2ðaÞ

n2ðaÞ � n3ðaÞ
. ð45bÞ
Noting Eq. (45), A2, A3, B2, B3, C2, C3 can be expressed from (38)–(43) as
A2 ¼
1

ðem2h � em3hÞm2

Z b

a
½F 4ða; u; pÞ � em3hF 1ða; u; pÞ�g1ðu; pÞdu; ð46Þ

A3 ¼
1

ðem2h � em3hÞm3

Z b

a
½em2hF 1ða; u; pÞ � F 4ða; u; pÞ�g1ðu; pÞdu; ð47Þ

B2 ¼
1

ðen2h � en3hÞn2

Z b

a
½F 5ða; uÞ � en3hF 2ða; uÞ�geeg

123ðu; pÞdu; ð48Þ

B3 ¼
1

ðen2h � en3hÞn3

Z b

a
½en2hF 2ða; uÞ � F 5ða; uÞ�geeg

123ðu; pÞdu; ð49Þ

C2 ¼
1

ðen2h � en3hÞn2

Z b

a
½F 5ða; uÞ � en3hF 2ða; uÞ�gfgl

123ðu; pÞdu; ð50Þ

C3 ¼
1

ðen2h � en3hÞn3

Z b

a
½en2hF 2ða; uÞ � F 5ða; uÞ�gfgl

123ðu; pÞdu. ð51Þ
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Substituting Eqs. (29)–(31) into Eqs. (16)–(18) in Laplace transform domain, we obtain
r�zyðx; 0; pÞ ¼ ebx 1

2p

Z 1

�1
� m10m1A1 þ m20n1B1 þ m30n1C1ð Þe�iax da

�

þ 2

p

Z 1

0

X3

j¼2

m10Aje
mjx þ m20Bje

njx þ m30Cje
njx

� �
ada

#
; ð52Þ

D�yðx; 0; pÞ ¼ ebx 1

2p

Z 1

�1
�n1B1e�iax daþ 2

p

Z 1

0

X3

j¼2

ðBje
njxÞada

" #
; ð53Þ

B�yðx; 0; pÞ ¼ ebx 1

2p

Z 1

�1
�n1C1e�iax daþ 2

p

Z 1

0

X3

j¼2

ðCje
njxÞada

" #
. ð54Þ
By means of Eqs. (34)–(37), (46)–(54) and boundary conditions (21) in Laplace transform domain, we can
obtain the following integral equations:
1

p

Z b

a
m10 h11 þ ~h11

� �
þ ðe110f 2

150 � 2e150f150g110 þ l110e2
150Þ=ðg2

110 � e110l110Þðh12 þ ~h12Þ
� 	


g1ðu; pÞ þ e150ðh12 þ ~h12Þg2ðu; pÞ þ f150ðh12 þ ~h12Þg3ðu; pÞ
�

du ¼ �s0e�bx=p; x 2 ða; bÞ; ð55Þ

1

p

Z b

a
e150 h12 þ ~h12

� �
g1ðu; pÞ � e110 h12 þ ~h12

� �
g2ðu; pÞ

�
� g110 h12 þ ~h12

� �
g3ðu; pÞ

	
du

¼ �D0e�bx=p; x 2 a; bð Þ; ð56Þ

1

p

Z b

a
f150ðh12 þ ~h12Þg1ðu; pÞ � g110ðh12 þ ~h12Þg2ðu; pÞ
�

� l110ðh12 þ ~h12Þg3ðu; pÞ
	

du

¼ �B0e�bx=p; x 2 ða; bÞ; ð57Þ
where h11(u, x, p), h12(u, x), ~h11ðu; x; pÞ and ~h12ðu; xÞ (given in Appendix B) are the known functions.
Following the method developed by Erdogan and Gupta (1972), Eqs. (55)–(57) can be modified as

follows:
1

p

Z b

a
m10ðh11 þ ~k11 � QÞ þ c440

1

u� x
þ Q

� �� �
g1ðu; pÞþ



e150

1

u� x
þ Q

� �
g2ðu; pÞ

þ 1

u� x
þ Q

� �
f150g3ðu; pÞ

�
du ¼ � s0

p
e�bx; x 2 ða; bÞ; ð58Þ

1

p

Z b

a
e150

1

u� x
þ Q

� �
g1ðu; pÞ � e110

1

u� x
þ Q

� �
g2ðu; pÞ

�
�g110

1

u� x
þ Q

� �
g3ðu; pÞ

�
du ¼ �D0

p
e�bx; x 2 ða; bÞ; ð59Þ

1

p

Z b

a
f150

1

u� x
þ Q

� �
g1ðu; pÞ � g110

1

u� x
þ Q

� �
g2ðu; pÞ

�
�l110

1

u� x
þ Q

� �
g3ðu; pÞ

�
du ¼ �B0

p
e�bx; x 2 ða; bÞ; ð60Þ
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where
Qðu; xÞ ¼ h12ðu; xÞ þ ~k12ðu; xÞ; ð61Þ

~k11ðu; x; pÞ ¼
Z 1

0

Mða; u; x; pÞ þMð�a; u; x; pÞ � sin aðu� xÞ½ �da; ð62Þ

~k12ðu; xÞ ¼
Z 1

0

Nða; u; xÞ þ Nð�a; u; xÞ � sin aðu� xÞ½ �da; ð63Þ

M ¼ m1

2ia
eiaðu�xÞ; N ¼ n1

2ia
eiaðu�xÞ. ð64Þ
Introducing the following normalized quantities:
u ¼ gðb� aÞ=2þ ðbþ aÞ=2; x ¼ 1ðb� aÞ=2þ ðbþ aÞ=2; �1 < ðg; 1Þ < 1; ð65Þ
G1ðg; pÞ ¼ g1ðu; pÞ; G2ðg; pÞ ¼ g2ðu; pÞ; G3ðg; pÞ ¼ g3ðu; pÞ; ð66Þ
t1ð1Þ ¼ �e�bxs0; t2ð1Þ ¼ �e�bxD0; t3ð1Þ ¼ �e�bxB0. ð67Þ
Eqs. (58)–(60) can be further written as
1

p

Z 1

�1

1

g� 1
þ bQ g; 1ð Þ

� �
c440G1ðg; pÞ þ e150G2ðg; pÞ þ f150G3ðg; pÞð Þdg

þ 1

p

Z 1

�1

m10 ĥ11 g; 1; pð Þ þ ~̂k11 g; 1; pð Þ � bQ g; 1ð Þ
� �

G1ðg; pÞdg ¼ t1ð1Þ
p

; ð68Þ

1

p

Z 1

�1

1

g� 1
þ bQðg; 1Þ� �

e150G1ðg; pÞ � e110G2ðg; pÞ � g110G3ðg; pÞð Þdg ¼ t2ð1Þ
p

; ð69Þ

1

p

Z 1

�1

1

g� 1
þ bQ g; 1ð Þ

� �
ðf150G1ðg; pÞ � g110G2ðg; pÞ � l110G3ðg; pÞÞdg ¼ t3ð1Þ

p
; ð70Þ
where
bQðg; 1Þ ¼ b� a
2

Qðu; xÞ; ð71aÞ

ĥ11ðg; 1; pÞ ¼
b� a

2
h11ðu; x; pÞ; ~̂k11ðg; 1; pÞ ¼

b� a
2

~k11ðu; x; pÞ ð71bÞ
and the single-valued conditions (22) may be expressed as
Z 1

�1

G1ðg; pÞdg ¼ 0;

Z 1

�1

G2ðg; pÞdg ¼ 0;

Z 1

�1

G3ðg; pÞdg ¼ 0. ð72Þ
Based on the numerical method of Erdogan and Gupta (1972), a system of linear algebraic equations can be
obtained as
XK

j¼1

1

gj � 1i
þ bQ gj; 1i

� � !
c440R1ðgj; pÞ þ e150R2ðgj; pÞ þ f150R3ðgj; pÞ

K

þ
XK

j¼1

m10 ĥ11ðgj; 1i; pÞ þ ~̂k11ðgj; 1i; pÞ � bQðgj; 1iÞ
� �R1ðgj; pÞ

K
¼ t1ð1iÞ

p
; ð73Þ

XK

j¼1

1

gj � 1i
þ bQðgj; 1iÞ

 !
e150R1ðgj; pÞ � e110R2ðgj; pÞ � g110R3ðgj; pÞ

K
¼ t2ð1iÞ

p
; ð74Þ
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XK

j¼1

1

gj � 1i
þ bQðgj; 1iÞ

 !
f150R1ðgj; pÞ � g110R2ðgj; pÞ � l110R3ðgj; pÞ

K
¼ t3ð1iÞ

p
; ð75Þ

XK

j¼1

R1ðgj; pÞ=K ¼ 0; ð76Þ

XK

j¼1

R2ðgj; pÞ=K ¼ 0; ð77Þ

XK

j¼1

R3ðgj; pÞ=K ¼ 0; ð78Þ
where
R1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p
G1ðg; pÞ; R2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p
G2ðg; pÞ; R3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p
G3ðg; pÞ; ð79Þ

gj ¼ cos½ð2j� 1Þp=2K�; j ¼ 1; 2; . . . ;K; ð80Þ
1i ¼ cosðip=KÞ; i ¼ 1; 2; . . . ;K � 1. ð81Þ
K is the number of the discrete points of g.
4. Definition and analysis of field intensity factors and energy release rates

The dynamic stress intensity factors (DSIFs), dynamic electric displacement intensity factors (DEDIFs)
and dynamic magnetic induction intensity factors (DMIIFs) in Laplace domain are defined as
K�IIIa ¼ lim
x!a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pða� xÞ

p
r�yzðx; 0; pÞ; K�IIIb ¼ lim

x!b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðx� bÞ

p
r�yzðx; 0; pÞ; ð82Þ

K�Da ¼ lim
x!a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pða� xÞ

p
D�yðx; 0; pÞ; K�Db ¼ lim

x!b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðx� bÞ

p
D�yðx; 0; pÞ; ð83Þ

K�Ba ¼ lim
x!a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pða� xÞ

p
B�yðx; 0; pÞ; K�Bb ¼ lim

x!b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðx� bÞ

p
B�yðx; 0; pÞ. ð84Þ
Expanding R1(g, p), R2(g, p) and R3(g, p) in forms of Chebyshev polynomials Tj(g) and applying the follow-
ing property of Tj(g)
1

p

Z 1

�1

ð1� g2Þ�1=2T jðgÞ
g� 1

dg ¼
ð12 � 1Þ1=2 � 1
h ij

ð�1Þjþ1 12 � 1ð Þ1=2
; 1j j > 1; ð85Þ
we obtain
K�IIIa ¼ eba

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b� a

2
p

r
½c440R1ð�1; pÞ þ e150R2ð�1; pÞ þ f150R3ð�1; pÞ�; ð86aÞ

K�IIIb ¼ �ebb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b� a

2
p

r
½c440R1ð1; pÞ þ e150R2ð1; pÞ þ f150R3ð1; pÞ�; ð86bÞ

K�Da ¼ eba

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b� a

2
p

r
½e150R1ð�1; pÞ � e110R2ð�1; pÞ � g110R3ð�1; pÞ�; ð87aÞ

K�Db ¼ �ebb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b� a

2
p

r
½e150R1ð1; pÞ � e110R2ð1; pÞ � g110R3ð1; pÞ�; ð87bÞ
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K�Ba ¼ eba

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b� a

2
p

r
½f150R1ð�1; pÞ � g110R2ð�1; pÞ � l110R3ð�1; pÞ�; ð88aÞ

K�Bb ¼ �ebb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b� a

2
p

r
½f150R1ð1; pÞ � g110R2ð1; pÞ � l110R3ð1; pÞ�. ð88bÞ
Note Eqs. (76)–(78) can be written as
XK

j¼1

c440R1ðgj; pÞ þ e150R2ðgj; pÞ þ f150R3ðgj; pÞ
� 	

¼ 0; ð89Þ

XK

j¼1

e150R1ðgj; pÞ � e110R2ðgj; pÞ � g110R3ðgj; pÞ
� 	

¼ 0; ð90Þ

XK

j¼1

f150R1ðgj; pÞ � g110R2ðgj; pÞ � l110R3ðgj; pÞ
� 	

¼ 0. ð91Þ
It is easy to know that e150R1(gj, p) � e110R2(gj, p) � g110R3(gj, p) and f150R1(gj, p) � g110R2(gj, p) �
l110R3(gj, p) are independent and that they respectively can be obtained by solving Eqs. (74) and (90),
and Eqs. (75) and (91). By expressing the solution of Eqs. (74) and (90) for unit electrical loads as following
e150R1ðgj; pÞ � e110R2ðgj; pÞ � g110R3ðgj; pÞ ¼ UðgjÞ=p; ð92Þ
the DEDIFs and DMIIFs in time domain can be obtained from Eqs. (87)–(88) as
KDa ¼ ebaD0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b� a

2
p

r
Uð�1ÞHðtÞ; KDb ¼ �ebbD0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b� a

2
p

r
Uð1ÞHðtÞ; ð93Þ

KBa ¼ ebaB0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b� a

2
p

r
Uð�1ÞHðtÞ; KBb ¼ �ebbB0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b� a

2
p

r
Uð1ÞHðtÞ. ð94Þ
It can be seen that both the DEDIFs and DMIIFs are the Heaviside unit step function of time, and only
related to the corresponding electrical or magnetical impact loads. They are both independent of the
mechanical loads as well as the relevant material constants. This coincides with the results for the static
problem.

With the solutions of e150R1(gj, p) � e110R2(gj, p) � g110R3(gj, p) and f150R1(gj, p) � g110R2(gj, p) �
l110R3(gj, p), c440R1(�1, p) + e150R2(�1, p) + f150R3(�1, p) can be obtained from Eqs. (73) and (89). The
DSIFs in time domain can be written as
KIIIa ¼ eba

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b� a

2
p

r
Wð�1; tÞ; KIIIb ¼ �ebb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b� a

2
p

r
Wð1; tÞ; ð95Þ
where
Wðg; tÞ ¼ 1

2pi

Z
Br
½c440R1ðg; pÞ þ e150R2ðg; pÞ þ f150R3ðg; pÞ�ept dp. ð96Þ
It is easy to know that the DSIFs are related to mechanical loads, electrical loads, magnetical loads and the
relevant material constants. However, when the loads tend to be static ones, ĥ11ðgj; 1i; pÞ þ ~̂k11ðgj; 1i; pÞ�bQðgj; 1iÞ in Eq. (73) vanishes, the resulting SIFs will become, from Eqs. (73) and (89), as follows
KIIIa ¼ ebas0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b� a

2
p

r
Uð�1ÞHðtÞ; KIIIb ¼ �ebbs0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b� a

2
p

r
Uð1ÞHðtÞ. ð97Þ
That is, for static problem, the SIFs are only related to mechanical loads as well.
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It should be noted that if all the magnetic quantities are made to vanish, the magneto-electro-elastic solu-
tion reduces to the dynamic anti-plane crack problem of piezoelectric material (Chen and Yu, 1997). This
means our results are universal and correct.

Further extending the traditional concept of dynamic stress intensity factor to the dynamic strain inten-
sity factor KS, electric field intensity factor KE and magnetic field intensity factor KH, we have from Eqs.
(95), (93), (94) and (1), (2), (3)
KSa

KEa

KHa

0B@
1CA ¼ lim

x!a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pða� xÞ

p w;yðx; 0; tÞ
�/;yðx; 0; tÞ
�w;yðx; 0; tÞ

0B@
1CA ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b� a
2

p

r
P�1

Wð�1; tÞd
D0Uð�1ÞHðtÞ
B0Uð�1ÞHðtÞ

0B@
1CA; ð98Þ

KSb

KEb

KHb

0B@
1CA ¼ lim

x!b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðx� bÞ

p w;yðx; 0; tÞ
�/;yðx; 0; tÞ
�w;yðx; 0; tÞ

0B@
1CA ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b� a
2

p

r
P�1

Wð1; tÞ
D0Uð1ÞHðtÞ
B0Uð1ÞHðtÞ

0B@
1CA; ð99Þ
where
P ¼
c440 �e150 �f150

e150 e110 g110

f150 g110 l110

0B@
1CA. ð100Þ
Obviously, KS, KE and KH all depend on material constants and applied loads including mechanical loads,
electrical loads and magnetical loads.

For the magneto-electrically impermeable cracks, as the electrical and/or magnetical impacts are
loaded, the DSIFs cannot perfectly reflect the fracture characteristics as in the purely elastic case. There-
fore, the dynamic energy release rates (DERRs) G are introduced by calculating the work done in closing
the crack tip over an infinitesimal distance. In accordance with the definition of the energy release rate
proposed by Pak (1990), after a similar deriving process carried out by Wang and Yu (2000), we can finally
obtain
GNðtÞ ¼
1

2
KIIINðtÞeK wNðtÞ þ KDNðtÞeK /NðtÞ þ KBNðtÞeK wNðtÞ
h i

; N ¼ a; b; ð101Þ
where
eK wN ¼
l110e110 � g2

110

� �
KIIIN þ e150l110 � f150g110ð ÞKDN þ f150e110 � e150g110ð ÞKBN

c440l110e110 þ e2
150l110 þ f 2

150e110 � c440g2
110 � 2e150f150g110ð ÞebN

; ð102aÞ

eK /N ¼
e150l110 � f150g110ð ÞKIIIN � c440l110 þ f 2

150

� �
KDN þ c440g110 þ e150f150ð ÞKBN

c440l110e110 þ e2
150l110 þ f 2

150e110 � c440g2
110 � 2e150f150g110ð ÞebN

; ð102bÞ

eK wN ¼
f150e110 � e150g110ð ÞKIIIN þ c440g110 þ e150f150ð ÞKDN � c440e110 þ e2

150

� �
KBN

c440l110e110 þ e2
150l110 þ f 2

150e110 � c440g2
110 � 2e150f150g110ð ÞebN

. ð102cÞ
For magneto-electrically permeable case, the singular integral equation and the single-valued condition
can be derived by a similar method as
1

p

Z b

a
m10ðh11 þ ~k11 � QÞ þ c440

1

u� x
þ Q

� �� �
g1ðu; pÞdu ¼ � s0

p
e�bx; x 2 ða; bÞ; ð103ÞZ b

a
g1ðu; pÞdu ¼ 0. ð104Þ
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The electric displacement D�yðx; 0; pÞ and magnetic induction B�yðx; 0; pÞ on the crack surfaces can be ob-
tained as
Fig. 2.
impact
D�yðx; 0; pÞ ¼ ebx 1

p

Z b

a
e150

1

u� x
þ Qðu; xÞ

� �
g1ðu; pÞdu� D0

p
; x 2 ða; bÞ; ð105Þ

B�yðx; 0; pÞ ¼ ebx 1

p

Z b

a
f150

1

u� x
þ Qðu; xÞ

� �
g1ðu; pÞdu� B0

p
; x 2 ða; bÞ; ð106Þ
The field intensity factors and DERRs in time domain are respectively
KIIIa ¼ eba

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b� a

2
p

r
c440R1ð�1; tÞ; KIIIb ¼ �ebb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b� a

2
p

r
c440R1ð1; tÞ; ð107Þ
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KDa ¼
e150

c440

KIIIaðtÞ; KDb ¼
e150

c440

KIIIbðtÞ; ð108Þ

KBa ¼
f150

c440

KIIIaðtÞ; KBb ¼
f150

c440

KIIIbðtÞ; ð109Þ

KSa ¼
1

c440eba
KIIIaðtÞ; KSb ¼

1

c440ebb
KIIIbðtÞ; ð110Þ

KEa ¼ KEb ¼ 0; ð111Þ
KHa ¼ KHb ¼ 0; ð112Þ

Ga ¼
K2

IIIaðtÞ
2c440

e�ba; Gb ¼
K2

IIIbðtÞ
2c440

e�bb; ð113Þ
where
R1ðg; tÞ ¼
1

2pi

Z
Br

R1ðg; pÞept dp; ð114Þ
and R1(g, p) can be obtained by solving Eqs. (103) and (104).
As shown in Eqs. (107)–(113), for magneto-electrically permeable cracks, both the electric field intensity

factors and magnetic field intensity factors vanish. Electrical loads and magnetical loads reduce the concen-
tration of DEDIFs and DMIIFs, respectively. Material graded index has the same influences on the DSIFs,
DEDIFs, DMIIFs and dynamic strain intensity factors. The DERRs, DEDIFs, DMIIFs and dynamic
strain intensity factors are the functions of the DSIFs, and all of them including the DSIFs depend on
not only shear loads but also material parameters. Both imposed magnetical loads and electrical loads
do not contribute to the DSIFs and/or DERRs, thus, the DERRs and DSIFs are quite equivalent to be
a fracture parameter. This is similar to the electrically permeable crack problem of piezoelectric materials
(Wang and Yu, 2000). In the absence of the mechanical impact loads, in other words, the material is in
effect seamless as far as both the electric field and the magnetic field are concerned, and the fields will
not be perturbed by the presence of the cracks (McMeeking, 1989). It should also be noted that when
the loads tend to static ones, m10ðh11 þ ~k11 � QÞ in Eq. (103) vanishes, the SIFs will be quite in agreement
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with the magneto-electrically impermeable case, i.e., Eq. (97). This means for static problem, the SIFs are
related to the shear loads only.
5. Numerical results and discussion

In this section, we investigate the responses of functionally graded magneto-electro-elastic strip with a
central crack (b + a = h). Since the DERRs and field intensity factors at the left crack tip for a certain mate-
rial gradient parameter bh have definite relations to those at the right crack tip for the corresponding neg-
ative value �bh, only the numerical results at the left crack tip will be presented. Without any loss in
generality, in all our numerical procedure, s0 is taken as 4.2 · 106 N/m2.

For comparison with the known results, as a special example, the DSIFs and DERRs for the crack prob-
lem of functionally graded piezoelectric material under both electrically impermeable and electrically
permeable crack surface conditions are first calculated. The material constants at x = 0 plane are assumed
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Fig. 4. Normalized (a) DERRs and (b) DSIFs for homogeneous magneto-electro-elastic strip under shear impacts.
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to be those of BaTiO3 (Wang and Yu, 2000; Chen et al., 2003). From the numerical results plotted in
Fig. 2a, it is obvious that the present results are in good agreement with those given by Chen et al.
(2003). From Fig. 2b, where G0 ¼ pðb� aÞs2

0=½4ðc440 þ e2
150=e110Þ�, it is found that for homogeneous piezo-

electric strip, i.e., bh = In(1.0), our results are also in agreement with those given by Wang and Yu (2000).
For functionally graded magneto-electro-elastic material, for the sake of generality, the material con-

stants at x = 0 plane are taken as (Song and Sih, 2003)
Fig. 5.
kD = 0
c440 ¼ 44:65� 109 N=m2; e150 ¼ 5:7 C=m2; e110 ¼ 6:46� 10�9 C=V m;

f150 ¼ 275:0 N=A m; l110 ¼ �292:5� 10�6 N s2=C2; q0 ¼ 6:49� 103 kg=m3;
i.e., in Eq. (A.1) in Song and Sih (2003), the composite is assumed to be made of BaTiO3 as the inclusions
and CoFe2O4 as the matrix, and the volume fraction of the inclusions is taken as Vf = 0.5. Numerical
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results are presented in Figs. 3–8, where the DERRs are normalized by G0 which is determined as
G0 ¼ pðb� aÞs2

0=ð4l0Þ. The loading combination parameter kB is determined as kB = B0f150/(s0l110) which
is used to reflect the combination between the mechanical impact �s0H(t) and the magnetical impact
�B0H(t). kD is determined as kD = D0e150/(s0e110) which is used to reflect the combination between the
mechanical impact �s0H(t) and the electrical impact �D0H(t).

Fig. 3 compares the normalized DERRs between the magneto-electrically impermeable and permeable
cases for (b � a)/h = 1/1.5 in the absence of magneto-electrical impacts (kB = kD = 0). The peak value cor-
responding to magneto-electrically impermeable cracks are smaller than that corresponding to permeable
cracks. There are no other distinct differences. Since both magnetical and electrical impacts have no con-
tribution to the DERRs and/or DSIFs for the magneto-electrically permeable cracks, the following part
of this section will mainly concentrate on the impermeable case.
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For the homogeneous magneto-electro-elastic strip, the DERRs and DSIFs under the shear impacts are
plotted in Fig. 4. As shown in Fig. 4, the peak values of DERRs or DSIFs will increase with the increasing
of (b � a)/h, and the DERRs and DSIFs are also equivalent to be a fracture parameter under only mechan-
ical impacts, which is similar to electrically impermeable crack problem of piezoelectric materials (Wang
and Yu, 2000).

Figs. 5 and 6 show that for definite electrical loads, in general, magnetical loads enhance crack propa-
gation and growth, and that positive magnetical loads effectively enhance crack propagation compared with
negative magnetical loads. Figs. 5 and 6 also indicate that for definite electrical impact loads, at t = 0, the
DERRs for a fixed kB equal to that for corresponding �kB.

Fig. 7 shows that for definite magnetical loads, electrical loads always decrease the DERRs, and that
negative electrical loads are easier to inhibit crack growth than positive electrical loads. In addition, for
definite magnetical loads, at t = 0, the DERRs for a fixed kD equal to that for �kD as well. This coincides
with electrically impermeable crack problem for homogeneous piezoelectric strip (Wang and Yu, 2000).
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Fig. 8 shows the effects of crack size (b � a)/h and material gradient parameter bh on the normalized
DERRs and DSIFs. It is found that the maximum of DERRs and/or DSIFs at the left crack tip will in-
crease as (b � a)/h increases or bh decreases. And with the increase of bh, the effect of (b � a)/h on the
normalized DERR and/or DSIF will decrease.
6. Conclusions

(1) Integral transform and singular integral equation method can be used effectively to solve the dynamic
response of a functionally graded magneto-electro-elastic strip containing a finite crack subjected to
magneto-electro-mechanical impacts.

(2) For the magneto-electrically impermeable cracks, the DEDIFs and DMIFs are, respectively, related
to applied electrical loads and magnetical loads only. All the other field intensity factors and DERRs
depend on both applied loads including mechanical, electrical and magnetical loads and material
parameters. In addition, both DEDIFs and DMIFs are the Heaviside step function of time.
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(3) For the magneto-electrically permeable cracks, both magnetical and electrical impacts have no
contribution to the DERR and field intensity factors. Both magnetic field and electric field intensity
factors vanish. All other field intensity factors and DERRs are related to mechanical loads
and material parameters. Among others, only one of them, such as stress intensity factor, is
independent.

(4) In general, the maximum of normalized DERRs for magneto-electrically permeable cracks are
generally higher than that for impermeable case under only mechanical impacts.

(5) For the magneto-electrically impermeable cracks, the loading combination parameters have signifi-
cant and different influences on the normalized DERRs and DSIFs. According to maximum energy
release rate criterion, magnetical loads always enhance the crack propagation, and the cracks are eas-
ier to propagate under positive magnetical loads than under negative magnetical loads. However,
electric displacement loads always impede the crack propagation, and the negative electrical loads
effectively inhibit crack propagation compared with positive electrical loads.

(6) For both magneto-electrically impermeable and permeable cracks, the increasing of material gradient
parameter bh, in general, retards the crack extension.
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Appendix A

d1, e1, f1, d2, e2 and f2 in Eq. (11) are as follows:
d1 ¼
e150l110 � f150g110

l110e110 � g2
110

; e1 ¼
�l110

l110e110 � g2
110

; f 1 ¼
g110

l110e110 � g2
110

; ðA:1Þ

d2 ¼
e110f150 � e150g110

l110e110 � g2
110

; e2 ¼
g110

l110e110 � g2
110

; f 2 ¼
�e110

l110e110 � g2
110

. ðA:2Þ
m10, m20, m30 in Eq. (16) are as follows:
m10 ¼ c440 þ
e110f 2

150 � 2e150f150g110 þ l110e2
150

l110e110 � g2
110

; m20 ¼
f150g110 � e150l110

l110e110 � g2
110

; ðA:3Þ

m30 ¼
e150g110 � f150e110

l110e110 � g2
110

. ðA:4Þ
Appendix B

h1i, ~h1i (i = 1, 2) in Eqs. (55)–(57) are as follows:
h11ðu; x; pÞ ¼
Z 1

0

2em3x

m3 em3h � em2hð Þ F 4ða; u; pÞ � em2hF 1ða; u; pÞ
� 	

ada

þ
Z 1

0

2em2x

m2ðem2h � em3hÞ F 4ða; u; pÞ � em3hF 1ða; u; pÞ
� 	

ada ðB:1Þ
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h12ðu; xÞ ¼
Z 1

0

2en3x

n3ðen3h � en2hÞ ½F 5ða; uÞ � en2hF 2ða; uÞ�ada

þ
Z 1

0

2en2x

n2ðen2h � en3hÞ ½F 5ða; uÞ � en3hF 2ða; uÞ�ada ðB:2Þ

~h11ðu; x; pÞ ¼
Z 1

�1

m1

2ia
eiaðu�xÞ da; ðB:3Þ

~h12ðu; xÞ ¼
Z 1

�1

n1

2ia
eiaðu�xÞ da. ðB:4Þ
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